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Three and four current reversals versus temperature in correlation ratchets
with a simple sawtooth potential

Risto Tammelo,1,* Romi Mankin,2 and Dmitri Martila1

1Institute of Theoretical Physics, Tartu University, 4 Ta¨he Street, 51010 Tartu, Estonia
2Department of Natural Sciences, Tallinn Pedagogical University, 25 Narva Road, 10120 Tallinn, Estonia

~Received 1 July 2002; published 7 November 2002!

Transport of Brownian particles in a simple sawtooth potential subjected to both unbiased thermal and
nonequilibrium symmetric three-level Markovian noise is considered. The effects of three and four current
reversals as a function of temperature are established in such correlation ratchets. The parameter space coor-
dinates of the fixed points associated with these current reversals and the necessary and sufficient conditions
for the existence of the current reversals are found.
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The aim of this paper is to study current reversals in c
trolled transport of Brownian particles@1# induced by sym-
metric nonequilibrium noise in ratchets with a simple sa
tooth potential, bearing in mind potential applications f
separation of nanoobjects@2#. It is known that current rever
sals in ratchet systems can be engendered by changing
ous system parameters@3–15#, including the flatness param
eter of the noise @5–9#, the correlation time of
nonequilibrium fluctuations@10#, the temperature in multi-
noise cases@11#, the power spectrum of the noise sour
@12#, the shape of the potential@13#, the number of interact-
ing particles per unit cell@14#, and the mass of the particle
@15#. As a rule, these results have been obtained at the li
of either slow and fast noise or by numerical methods. At
same time, analytic results would greatly facilitate the stu
especially in the intermediate regimes of the system par
eters which is the realm of biology. It is especially difficult
obtain analytic expressions for the multinoise ratchets. A
tunate exception here is the symmetric three-level telegr
process~trichotomous noise! which is rich enough physically
and can at the same time be treated analytically@8,9,16#. In
this paper we will prove, on the basis of the leading ord
term of a series expansion for the probability current in ter
of inverse flatness, that there exist three and four cur
reversals of the probability current as a function of tempe
ture D. Never before have more than two current revers
with D been reported for correlation ratchets with a sim
sawtooth potential.~At the same time, in the case of rockin
ratchets, infinitely many current reversals may occur@17#.!
We will also derive the necessary and the necessary and
ficient conditions for the existence of these current revers

A zero-mean trichotomous Markovian stochastic proc
Z(t) consists of jumps between three valuesz5$a,0,
2a%,a.0. The jumps follow in time the pattern of a Poi
son process, the values occurring with the stationary pr
abilities Ps(a)5Ps(2a)5q and Ps(0)5(122q), where
0,q,1/2. Denoting the state space and the transition m
trix of our trichotomous process, respectively, by$ai%
ª$a,0,2a% andTi jªP$ai ,t1tuaj ,t%, i , j 51,2,3,t.0, we
have
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~Ti j !5~d i j !1S q21 q q

122q 22q 122q

q q q21
D

3~12e2nt!, ~1!

where n.0. In a stationary state, the fluctuation proce
satisfies ^Z(t)&50 and ^Z(t1t)Z(t)&52qa2 exp(2nt),
where the switching raten is the reciprocal of the noise
correlation timetc51/n, i.e.,Z(t) is a symmetric zero-mean
exponentially correlated noise. The trichotomous process
particular case of the kangaroo process@5# with flatness pa-
rameterwª^Z4(t)&/^Z2(t)&251/(2q).

At large flatness,q→0, which is the case addressed in t
present paper, the transition matrix of our trichotomous p
cess takes the following form:

~Ti j !5~d i j !1S 21 0 0

1 0 1

0 0 21
D ~12e2nt!1O~q!. ~2!

Within the framework of the three-level noise models used
Refs. @6,7# flatness is determined by a parameterl, which
regulates the relative amount of time spent in the statz
50 as opposed to the statesz5a andz52a. If l→0, the
flatnessw→` and the leading order terms in the transitio
matrices of the noise processes of Refs.@6,7# and Eq.~2!
become equivalent. Thus, at large flatness our trichotom
noise essentially coincides with the noise used by Bier@6#
and Elston and Doering@7#.

We describe overdamped motion of Brownian particles
dimensionless units by the Langevin equation

dX

dt
5h~X!1j~ t !1Z~ t !, h~x![2

dV~x!

dx
, ~3!

whereV(x)5V(x11) is a periodic spatial potential of pe
riod 1. The thermal noise satisfieŝj(t)&50 and
^j(t1)j(t2)&52Dd(t12t2), where D is the thermal noise
strength which will simply be called the temperature, for t
sake of brevity. As said, we take the random forceZ(t) to be
a zero-mean trichotomous Markovian stochastic proc
©2002 The American Physical Society01-1
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@8,9,16#. To derive an exact formula forJ, the Fokker-Planck
master equation corresponding to Eq.~3! is used, supposing
that the potentialV(x) in Eq. ~3! is piecewise linear~saw-
toothlike! and its asymmetry is determined by a parame
dP(0,1), withd51/2 for symmetricV(x). The force caused
by the potential ish(x)5bª1/d for xP(0,d) and h(x)5
2cª21/(12d) for xP(d,1). Under these assumptions,
complex exact formula as a quotient of two 11th-order de
minants can be derived for the probability currentJ. To ob-
tain a more manageable formula, on the assumption tha
flatness parameter is large,w51/(2q)@1, we can expand
the current in a seriesJ5qJ(1)1q2J(2)1•••. One of the
present authors derived for the leading order termqJ(1) a
rather lengthy analytic expression, i.e., Eqs.~31!–~33! in
Ref. @9#. Herein we shall apply graphical analysis to stu
the analytic expression ofqJ(1) in the intermediate regimes

First we will briefly review the asymptotic limits of the
currentJ as a function ofn andD found in Ref.@9#. In the
case of large flatness at the asymptotic limits of both sm
and largen the functionJ5J(n) is always positive. Hence
in the case under discussion there can exist either none o
even number of current reversals withn. Two current rever-
sals vsn ~as well asD) were addressed by Ref.@9#. The case
of four current reversals vsn with the necessary and suffi
cient conditions for their existence was extensively discus
in our earlier paper@18#.

What concerns current reversals as functions ofD, then in
the asymptotic limit of high temperature,D→`, we find that

J'
q~b2c!a2

180bcD4 . ~4!

Thus, at high temperatures the behavior of the functioJ
5J(D) is uniform: the current is always positive and d
creases monotonically to zero asD→`. At low tempera-
tures, in the casesa,c andc,a,b the current is positive
for all values of n and d. For a.b the current behave
asymptotically as

J'qn$@en/c(a2c)2e2n/b(a1b)#21

2@en/b(a2b)2e2n/c(a1c)#21%. ~5!

Notably, J is positive in the case ofa<bc at anyn. If
a.bc, then the current reverses to negative at a criti
value n5n0. The point of reversaln0, being a nontrivial
solution of the transcendental equationJ(n0)50, can be
found by numerical calculation from Eq.~5!. In the limit of
low temperatures,D→0, the behavior of the functionJ
5J(D) is not uniform. Depending on the values of the r
maining parameters of the system, atD50 the functionJ
5J(D) may have a~finite! positive, a~finite! negative, or a
zero value and may start to increase, decrease, or re
practically constant for a while as the temperatureD in-
creases@9#. What is important about the asymptotic limits
the context of the present paper, where we are intereste
the behavior of the current in the intermediate domains of
system parameters, is the fact that at the limit of largeD the
function J5J(D) is always positive, whereas at the limit o
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small D it can be either negative or positive, and cons
quently there can occur any number, odd or even, of cur
reversals withD.

Before the present paper not more than two current re
sals with respect toD had been found for correlation ratche
with a simple sawtooth potential. Moreover, in a paper@9# by
one of the authors it was even argued that the possible n
ber of current reversals with temperature is either zero, o
or two.

Next we will examine the four-current-reversal effect as
function of D ~see Fig. 1!. Figure 2~b! exhibits the level
curves of zero current,J(D,n;d,a)50, for fixed d
50.0045 at different fixed values ofa5const. The level
curves may be considered as functionsn5n(D) @as well as
D5D(n)], with d anda being parameters. In Fig. 2~b! the
level curves on the left close at smaller finite values ofn ~not
shown!, whereas both branches of the level curves on
right approach zero asn grows. Regarding the upper branc
on the right, ifa,d21(12d)21, thenD becomes zero only
at the limit n→`, whereas ifa.d21(12d)21, then D is
zero at a finiten. In view of this, two types of level curves
are distinguishable in Fig. 2~b!: namely, the connected one
~i.e., curves 4–6! and the ones~i.e., curves 1 and 2! com-
prising two components, viz., a closed curve and a cu
with one end open. There is one very special level curve~i.e.,
curve 3! which intersects itself at the saddle point. The effe
of four current reversals vsD exists at a certain fixed valu
of nfixed5const if and only if there existd and a for which
the function n5n(D;d,a) has a local maximumnmax
.nfixed and a local minimumnmin,nfixed @see the vertical
dashed lines in Fig. 2~b!#.

By gradually varyinga andd one can demonstrate that th
region of existence of the four-current-reversal effect a
function of D shrinks to a four-pointC, which has the fol-
lowing coordinates:dC'0.005 330 5,aC'25.337 905 0,DC
'0.124 442 5, and lnnC'6.297 730 5. The four-current
reversal effect is possible ifdP(0,dC),aP(aC ,`), and n
P(nC ,`) ~see Fig. 3!. The necessary conditions for the e

FIG. 1. Four current reversals vs temperatureD for fixed d
50.0045 anda527.75. The switching rates are, respectively,~1!
n15649.651 630,~2! n25646.770 000, and~3! n35643.816 291.
Curve 2 has four single zeros. Curves 1 and 3 have two single z
and one twofold zero.~At fixed values ofd anda, for curves withn
values smaller thann3 and greater thann1 there can occur at mos
two current reversals.!
1-2
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istence of the four-current-reversal effect are shown in F
3~a! by the shaded regions in planes (d,a) and (d,n), and in
Fig. 3~b! by the region between the ascending outerm
curves in plane (n,a), while the intensively shadowed na
row wedge-shaped areas in Fig. 3~b! fix the values ofd,a,
andn, which are necessary and sufficient for the existenc
the four-current-reversal effect as a function ofD.

Turning to the three-current-reversal effect as a funct
of temperatureD ~see Fig. 4!, the effect occurs only in a very
narrow range of the system parametersa andn ~see Fig. 5!.
By varying a and d step by step, we see that the region
existence of the three-current-reversal effect as a functio
D shrinks to a critical four-pointS in the parameter space
which has the following coordinates:dS'0.032 75, DS
50, aS'38.959 53, nS'3.428 33. The three-curren
reversal effect is possible ifdP(0,dS), nP(3.1275,nS), and
aP(aS ,`) ~see Fig. 5!.

As demonstrated above, the necessary and sufficient
ditions for the existence of an odd number of current rev
sals vsD are a.bc and n.n0, wheren0 is a zero of the
functionJ(n) @see Eq.~5!#. In the opposite case, the numb
of current reversals is even or zero. To elucidate the phys
meaning of the above conditions, let us rederive Eq.~5! on
the grounds of the following physical considerations. In t
case of large flatness,q!1, the noiseZ(t) is with over-

FIG. 2. ~a! The surface of current reversalsJ(D,a,n)50 for a
fixed asymmetry parameterd50.0045. ~b! The projection of the
surface onto plane (D,n). The level curves correspond to the fo
lowing values of the noise amplitude:~1! a527.700 000,~2! a
527.733 329, ~3! a527.753 662, ~4! a527.755 045, ~5! a
527.765 482, and~6! a527.775 920. The effect begins atnA

5642.4480 and ends atnC5654.2591, whereas atnB5646.9504
there occur two twofold zeros.
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whelming probabilityPs(0)5122q'1 in the statez50
and the currentJ can be regarded as the sumJ5J11J2,
where the positive currentJ1 is caused by the transitionsz
5a↔z50 and the negative currentJ2 by the transitionsz
52a↔z50. ~Note that the transitionsz5a↔z52a in-
duce current that is proportional toq2 and will be discarded
in the present approximation.! Under these assumptions th

FIG. 3. ~a! The necessary and~b! the necessary and sufficien
conditions for the four-current-reversal effect. The dotted region
~a! displays the possible range of the four zeros of the currentJ(D)
at different values ofd.

FIG. 4. Three current reversals vs temperatureD for fixed d
50.005 anda5255.86. Switching rates are~1! n153.173 793 65,
~2! n253.173 811 12, and~3! n353.173 828 60. Curve 2 has thre
single zeros. Curves 1 and 3 have one single and one twofold z
1-3
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stationary probability distribution in the noise statez50
with D50 consists, evidently, ofd functions at x56n
1d,n50,1,2, . . . . Within the interval (0,1) the center o
mass lies aty05d. At the initial moment let the transition
z50→z52a occur. The first time the noise turns back
z50 is denoted byt0. The center of mass stabilizes now
the positiony. It is easy to find that the center of mass
shifted by Dy(t0)5y2y0 with Dy(t0)52(n11) if (n
11)T2.t0>nT21T1

2 and Dy(t0)52n if nT21T1
2.t0

>nT2. The intervalT25T1
21@(12d)/(a1c)# is the time

that the particle atz52a takes to pass the periodL51 of
the potential;T1

25d/(a2b) is the time necessary for pas
ing the lengthd ~i.e., from the minimum of the potential to
the maximum in the negative direction!. The probability
W(t0) that in a certain time interval (0,t0) the transitionsz
52a→z50 do not occur is given byW(t0)5exp(2nt0).
The probability that such a transition will occur within th
time interval (t0 ,t01dt0) is ndt0, and consequentlŷDy&
5n*0

`e2nt0Dy(t0)dt0. Considering that the average numb
of transitions per unit time into thez52a0 state isqn, we
obtain J25qn^Dy&52qnW(T1

2)/@12W(T2)#. Similarly,
one can derive the positive component of the current, v
J15qnW(T1

1)/@12W(T1)#, where T1
15(12d)/(a

2c), T15T1
11d/(a1b). The inequalityT1,T2 being

equivalent tod,1/2, it is evident that the total currentJ
5J11J2, whose expression coincides exactly with Eq.~5!,
can be negative only whenT1

2,T1
1 . The latter inequality

can be written asa.bc, which is just the necessary cond
tion.

Following similar trains of thought as above in the case
low temperatureD!1 and replacing the passage timesT6

andT1
6 by the corresponding mean first passage times^T6&

and^T1
6&, one can rederive the necessary conditions for

existence of the three-current-reversal effect as a functio
temperature; namely, we obtain the formulasa541/(32d)
20.25 andn053.12(113d) which quite well approximate
the corresponding curves in Fig. 5.

FIG. 5. The necessary conditions for the three-current-reve
vs D effect. The curvesa5a(d) and n5n(d) represent actually
narrow regions in the planes (d,a) and (d,n). Especially narrow is
the bow depicted bya5a(d); e.g., atd50.001 the noise range
from amin51280.330 toamax51280.462.
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Finally, we will discuss the possible usefulness of the p
nomena of three and four current reversals. One of the
applications of the Brownian ratchet mechanism has bee
separate particles by size, charge, mass, etc. Separation
be achieved even if there are no current reversals, as part
of different viscous friction move at different speeds. If the
is only one current reversal, then particles of different fr
tion coefficients move in opposite directions within the sa
environment. If there occur two current reversals withn,
then particles with parameter values within a characteri
interval can be separated, as they move in the direction
posite to that of the remaining particles. However, it
known that the two zeros of the currentJ(n) generally occur
at greatly displaced values ofn. Therefore, those particle
whose friction coefficients are within a wide interval move
the opposite directions and the separation effect is of
selectivity. Although this wide interval can be made narrow
by varying the other system parameters, the really nar
intervals occur only in the vicinity of the transition regime
~i.e., the transition from two current reversals to zero curr
reversals!, where the absolute value of the current is sm
On the other hand, the effect of three current reversal withD
enables us to design continuous two-step separation sch
with very high selectivity within a narrown interval. Note
that at a fixed value ofd the range of values ofn where the
three-current-reversal vsD effect exists is very narrow in-
deed~see Fig. 5!.

Within the framework of the calculation scheme of th
present paper, the absolute value of the net current is
versely proportional to the flatness parameter of the tricho
mous noise,w51/(2q), andq as an expansion parameter
generally considered to be infinitesimal. However, we ha
managed to show by direct numerical calculations with
using expansion inq that the effects are present up toq
'0.015.

Beyond the separation methods, the phenomena of t
and four current reversals may be of interest in biology, e
when considering the motion of macromolecules. While it
known that the two-current-reversal effect allows one pair
motor proteins to move simultaneously in opposite directio
along the microtubulae inside the eukaryotic cells, then
istence of three and four current reversals will enable suc
simultaneous motion of many pairs of motor protein
Whether the intracellular transport makes use of the flash
ratchet mechanism as one presently tends to think, or
correlation ratchet mechanism, or a combination of them
mains to be seen.

To summarize, it is remarkable that the interplay of t
symmetric three-level and thermal noises in the ratchets w
a simple sawtooth potential generates such a rich variet
cooperation effects as up to four current reversals with te
perature as well as switching rate. The results are the m
surprising because in analogous model systems with s
metric dichotomous noise the current reversals are altoge
absent.

We acknowledge partial support by the Estonian Scie
Foundation Grant Nos. 4042 and 4208.

al
1-4



s.

ev

. E

r,
.

s.

THREE AND FOUR CURRENT REVERSALS VERSUS . . . PHYSICAL REVIEW E 66, 051101 ~2002!
@1# P. Reimann, Phys. Rep.361, 57 ~2002!.
@2# A. Ajdari and J. Prost, C. R. Acad. Sci., Ser. II: Mec., Phy

Chim., Sci. Terre Univers315, 1635 ~1992!; J. Rousselet, L.
Salome, A. Ajdari, and J. Prost, Nature~London! 370, 446
~1994!; S. Leibler, ibid. 370, 412 ~1994!; M. Bier and R. D.
Astumian, Phys. Rev. Lett.76, 4277 ~1996!; G. W. Slater, H.
L. Guo, and G. I. Nixon,ibid. 78, 1170~1997!; C. Kettner, P.
Reimann, P. Ha¨nggi, and F. Mu¨ller, Phys. Rev. E61, 312
~2000!.

@3# A. Mielke, Ann. Phys.~Leipzig! 4, 476 ~1995!.
@4# T. Hondou and Y. Sawada, Phys. Rev. E54, 3149~1996!.
@5# C. R. Doering, W. Horsthemke, and J. Riordan, Phys. R

Lett. 72, 2984~1994!.
@6# M. Bier, Phys. Lett. A211, 12 ~1996!.
@7# T. C. Elston and C. R. Doering, J. Stat. Phys.83, 359 ~1996!.
@8# R. Mankin, A. Ainsaar, and E. Reiter, Phys. Rev. E61, 6359

~2000!.
@9# R. Mankin, A. Ainsaar, A. Haljas, and E. Reiter, Phys. Rev

63, 041110~2001!.
05110
,

.

@10# R. Bartussek, P. Ha¨nggi, B. Lindner, and L. Schimansky-Geie
Physica D109, 17 ~1997!; C. Berghaus, U. Kahlert, and J
Schnakenberg, Phys. Lett. A224, 243 ~1997!.

@11# J. Kula, T. Czernik, and J. L”uczka, Phys. Rev. Lett.80, 1377
~1998!.

@12# M. M. Millonas and M. I. Dykman, Phys. Lett. A185, 65
~1994!.

@13# P. Reimann and T. C. Elston, Phys. Rev. Lett.77, 5328~1996!;
M. Kostur and J. L”uczka, Phys. Rev. E63, 021101~2001!.
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